

Post-fire Monitoring Rationale & Policy Review

H R Bollan MPhil PhD CSci CChem FRSC

SAMAP 2015 October 2015 Den Helder, Netherlands

Legislation

- UK Health & Safety at Work Regulations impose a general duty
 on employers to review preventative and protective measures
- Requirement to adequately investigate the immediate and underlying causes of incidents
 - ensure that remedial action is taken
 - lessons are learned
 - and longer-term objectives are introduced
- The MoD must discharge its Duty of Care to comply with the requirements to reduce the risk to ALARP (As Low As Reasonably Practicable)

Effects of fire

- Materials burnt in air produce toxic gases
 narcotic, irritant, smoke aerosols and heat
- Products affected by:
 - Type(s) of material(s) burning
 - Quantity
 - Ventilation available
- If individuals are exposed to one or more fire products at sufficient concentrations over time, they can develop potentially serious physiological effects

Fire characteristics

- Fire testing to be considered for general use within a submarine
 - surface spread of flame
 - oxygen index
 - smoke index
 - temperature index
 - toxicity index
- The required tests to determine the fire characteristics of materials are detailed in the Def. Stan. 07-247
- Only the results of fire toxicity testing iaw Def. Stan. 02-713 are being considered for post-fire monitoring

Issues

- During a fire & post-fire clean-up: submarine crew on secondary breathing system (EBS)
 - Period may last several hours
 - Monitoring throughout all compartments of the submarine
 - Not comfortable, restricts movement, time limited
- A review of post-fire monitoring requirements requested by operating authorities

Current post-fire monitoring

- Oxygen
- Carbon dioxide
- Carbon monoxide
- Hydrogen cyanide
- Hydrogen fluoride, Hydrogen chloride + Hydrogen bromide
- Hydrogen sulphide
- Nitrogen oxides
- Hydrogen Sulphide
- Sulphur dioxide
- Chlorine
- Total organic compounds + Tenax tube samples
- Total aerosols

MPC_{60} limits for the fire test gases

Gas	MPC ₆₀ / ppm
Carbon dioxide	50,000
Carbon monoxide	175
Hydrogen cyanide	10
Hydrogen fluoride	5
Hydrogen chloride	10
Hydrogen sulphide	100
Nitrogen oxides	15
Sulphur dioxide	20
Formaldehyde	9.6

Total Aerosols, $CES_{90} 0.5 \text{ mg.m}^{-3}$ Total Organics, $CES_{90} 40 \text{ mg.m}^{-3}$

SAMAP 2015 October 2015 Den Helder, Netherlands

Aims

- Review gases produced in fires involving materials used on board submarines
- Assess:
 - combustion products produced in high concentrations
 - those that pose a serious health risk
- Highlight main marker gases produced in fires
 - Concentration
 - Relative toxicity (acute or chronic)
- Propose a new safe, efficacious protocol for post-fire monitoring
 - Reduced number of gases needing to be monitored post fire
 - Minimise time taken to report concentrations post incident
 - Minimise time spent on EBS

Narcotic gases

Carbon dioxide Carbon monoxide Hydrogen cyanide

- Normal body function is possible up to a certain concentration for a period of time, and then deterioration of the body functions are quick and severe
- Potential effects:
 - Slight headaches
 - Dizziness
 - Lethargy
 - Depression of the CNS
 - Incapacitation
 - Loss of life

Irritant gases

Acid gases (HCl, HF, HBr) Nitrogen oxides Hydrogen sulphide Sulphur dioxide Formaldehyde

- Potential effects:
 - Instantaneous response: sensory irritation eyes & upper respiratory tract
 - Pain: may be considered as functionally incapacitating
 - Accumulated dose effect. High dose / short duration, or lower dose / long duration: respiratory difficulties of lower respiratory tract potentially leading to loss of life

Accumulated effects

Accumulated dose = concentration of gas x duration of exposure

Exposure to multiple gases = Synergistic effect

Review

- Materials involved with fires on submarines are:
 - Plastics
 - Deck coverings
 - Fabrics
 - Rubbers
 - Electricals
 - Paints
- Materials database test results of sample sets (19-31)
 - absolute concentrations of the nine relevant toxic compounds recorded
- Only materials approved for use in submarines were selected
- Results used to produce graphs
 - Absolute concentrations (arithmetic mean) / ppm
 - Percentage of MPC₆₀
 - Effect of extreme values

Plastic based fires - concentration

SAMAP 2015 October 2015 Den Helder, Netherlands

Plastic based fires - % MPC₆₀

Rubber based fires - concentration

Rubber based fires - % MPC₆₀

SAMAP 2015 October 2015 Den Helder, Netherlands

Summary of data analysis results

Gases in order of highest % of MPC ₆₀	Plastic based fire	Deck covering based fire	Fabric based fire	Electrical based fire	Rubber based fire	Paint based fire
1	Nitrogen oxides	Nitrogen oxides	Nitrogen oxides	Nitrogen oxides	Sulphur dioxide	Nitrogen oxides
2	Carbon monoxide	Hydrogen cyanide	Hydrogen cyanide	Hydrogen chloride	Nitrogen oxides	Carbon dioxide
3	Hydrogen cyanide	Carbon monoxide	Carbon monoxide	Carbon monoxide	Carbon monoxide	Carbon monoxide
4	Carbon dioxide	Carbon dioxide	Formaldehyde	Carbon dioxide	Hydrogen cyanide	Hydrogen fluoride
5	Hydrogen chloride	Hydrogen chloride	Sulphur dioxide	Hydrogen cyanide	Formaldehyde	Hydrogen cyanide
6	Formaldehyde	Formaldehyde	Carbon dioxide	Sulphur dioxide	Carbon dioxide	Formaldehyde
7		Sulphur dioxide	Hydrogen chloride	Formaldehyde	Hydrogen sulphide	Hydrogen chloride
8						Sulphur dioxide
9						Hydrogen sulphide

Ministry of Defence

Monitoring priorities

- 1. Nitrogen oxides (irritant)
- 2. Hydrogen cyanide (narcotic)
- 3. Carbon monoxide (narcotic)
- 4. Carbon dioxide (narcotic)
- 5. Acid gases (irritant)
- 6. Sulphur dioxide (irritant)

Adjusted monitoring priorities

- 1. Carbon monoxide (narcotic)
- 2. Carbon dioxide (narcotic)
- 3. Hydrogen cyanide (narcotic)
- 4. Nitrogen oxides (irritant)
- 5. Acid gases (irritant)
- 6. Sulphur dioxide (irritant)

Oxygen required to sustain life!

- RN upper limit is 22% safety based
- Remember during a fire oxygen is consumed thus lowering the concentration
- Before secondary breathing system may be removed O₂ level must be above 137 Torr = (137mmHg) (based on physiological effects)

Discussion

- The amount of gas required to breach the MPC₆₀ for the gases will vary according to the sizes of compartments within the submarines
- It would be inflexible to assign one marker gas for all fires
 - gases are not produced as discrete quantities
 - vary due to which compartment they are in
 - will depending on materials exposed to fire
 - vary according to activities on board
- Monitoring just seven key gases (including oxygen) could reduce the time spent on secondary breathing system
- Other types of fires may produce other toxic materials e.g. oils and greases supports requirement to monitor for organics and aerosols

Conclusions

- Completed review for six sets of materials
- Considering concentration only produced one set of priority gases
- Carbon dioxide was the main product
- Other target gases were produced in relatively small absolute volumes in comparison to carbon dioxide or made no significant impact on the danger to human health as a percentage of the gas' MPC₆₀
- Assessing the concentration of gases as a % of MPC₆₀ produced a different priority
- Discussion with other SMEs reprioritised the list

Conclusions

- Identified seven marker gases:
 - Carbon monoxide
 - Carbon dioxide
 - Hydrogen cyanide
 - Nitrogen oxides
 - Acid gases
 - Sulphur dioxide
 - Oxygen
- TOM & TAM monitoring at scene of fire

Acknowledgements

- Mr Phil Brocks *BSc(Hons)* for his advice on fire testing procedures and interpretation of results, and for his invaluable editorial comments
- Mr Liam Griffin & Mr Lee Kyte for interrogation of the various databases
- Tina Goodall for assistance with the SMTD & prep work
- Cdr David Jones, Cdr Mark Prince & Cdr Martyn Boyes for their input to the rationale paper
- UK Ministry of Defence Defence Equipment and Support, Naval Authority Group for supporting this work
- Steve Moore, Senior Occupational Hygienist At INM
- Chris Worrall, Occupational Toxicologist at INM

.....for your kind attention to my *last* international conference presentation!

SAMAP 2015 October 2015 Den Helder, Netherlands

