Removal of Chlorine (Cl_2) and Carbon Dioxide (CO_2) in Distressed Submarine utilising Lithium Hydroxide Reactive Polymer Curtains

<u>Charles Cummings</u>, Edward Harris, Geoff Loveman & Gareth Toft

30th Submarine Air Monitoring And Air Purification Symposium 30th April 2024, Amsterdam, Holland

QINETIQ/24/01932

Contents

1	Introduction
2	Experimental
	- Apparatus and materials
	- Data analysis
3	Results and discussion
	- Removal on LiOH RPC
	- Removal on CO ₂ saturated LiOH RPC
	- Compartment modelling
	- Removal on older batch of LiOH RPC

4 Conclusion and Acknowledgements

2 Cl_2 and CO_2 removal on LiOH RPC | April 2024 | © QinetiQ

1. Introduction

QINETIQ

Chemistry (Atmospheres)

• QinetiQ

- Science and Technology firm HQ in Farnborough, UK
- Chemistry (Atmospheres) Team sit within Maritime Life Support, alongside Diving and Submarine Escape
- Provide technical support and independent assurance
 - 1. Research and development
 - 2. Test and evaluation
 - 3. Fleet support

• Expertise in:

- 1. Submarine ventilation modelling
- 2. Atmosphere purification
- 3. Atmosphere analysis and monitoring
- 4. Equipment test and evaluation
- 5. Air quality (toxicology) investigative trials

4 Cl_2 and CO_2 removal on LiOH RPC | April 2024 | © QinetiQ

Background

- Distressed Submarine (DISSUB)
 - Submarine major incident has been declared
 - Submarine cannot manoeuvre
 - Submarine cannot operate routine life support systems including:
 - Oxygen generation
 - Carbon dioxide (CO₂) removal
 - Other contaminant removal

• Emergency Life Support

- Oxygen generators ("oxygen candles")
- CO₂ removal via lithium hydroxide (LiOH) reactive polymer curtains (LiOH-RPC)

But what is the fate of other contaminants?

Figure 1: Distressed Submarine

Figure 2: Oxygen candle and LiOH-RPC

Introduction

- Chlorine (Cl₂) can be produced from the electrolysis of seawater
- Generated from any exposure live wires or battery terminals (>2V)
- Elevated levels of chlorine poses a significant hazard
 - UK workplace exposure limits: 0.5 ppm for 15 min
 - USA NIOSH exposure limit: 0.5 ppm for 15 min
 - Immediate Danger to Life and Health limit: 10 ppm
- Some navies have adopted 1 ppm submarine escape limit

Figure 3: Chlorine and hydrogen generation

Our goal was to characterise Cl₂ removal on the laboratory small scale

6 Cl₂ and CO₂ removal on LiOH RPC | April 2024 | \odot QinetiQ

Introduction

- Cl₂ removal
 - Cl₂ removal should be facilitated by LiOH RPC
- Quantify Cl₂ removal on LiOH RPC
 - On the laboratory scale.... Cl₂ removal?
 - How quick? Chemical kinetics, capture rate?
 - How much? Capacity?
 - What is the influence of CO₂?
 - Does curtain storage time affect removal?

 Cl_2

Figure 4: Chlorine capture via LiOH RPC and box containing 70 sheets

• Direct reaction

$$CI_2 + 2LiOH \rightarrow LiCI + LiCIO + H_2O$$

• Reactive via intermediate

$$2CI_2 + 2H_2O \rightarrow HCIO_2 + 3HCI$$
$$HCIO_2 + LiOH \rightarrow LiCIO_2 + H_2O$$
$$HCI + LiOH \rightarrow LiCI + H_2O \qquad \textbf{OINFTIO}$$

7 - Cl_2 and CO_2 removal on LiOH RPC | April 2024 | \circledcirc QinetiQ

2. Experimental

QINETIQ

Experimental – Apparatus and materials

• Apparatus

- 158 L test chamber
- Cl₂ and CO₂ monitoring via electrochemical and IR sensors
- The tank contents were recirculated at 2 L.min⁻¹
- Source contaminants
 - Cl₂ gas was generated from a permeation device
 - Pure CO₂ gas was injected direct from a cylinder

Figure 5: Test Apparatus - Cl₂ and CO₂ filling

Experimental – Apparatus and materials

• Apparatus

- 158 L test chamber
- Cl₂ and CO₂ monitoring via electrochemical and IR sensors
- The tank contents were recirculated at 2 L.min⁻¹
- Source contaminants
 - Cl₂ gas was generated from a permeation device
 - Pure CO₂ gas was injected direct from a cylinder

• LIOH RPC

- All LiOH RPC were cut into 10 x 10 cm
 - In-date LiOH RPC samples were from Micropore Corp. (~3 y) – Majority Tests
 - 2. CO₂-saturated LiOH RPC (in-date)
 - 3. Limited tests on an out-of-date (~14 y) LiOH RPC samples

Figure 6: Test Apparatus - CI_2 and CO_2 removal

Cl_2 gas sensors USE USE LIOH RPC

Experimental – Apparatus and materials

Figure 7: Photograph of test apparatus

11 Cl₂ and CO₂ removal on LiOH RPC | April 2024 | © QinetiQ

QINETIQ

Experimental – Data analysis

- LiOH RPC contaminant removal kinetics
 - Pseudo first order rate law

Capture Rate =
$$\frac{d[contaminant]}{dt} = k'_{obs}[contaminant]$$

 $k'_{removal} = k'_{obs} - k'_{background}$

- k'_{removal} is likely a product of a number of processes (Langmuir kinetics) including:
 - 1. Mass transport
 - 2. Adsorption
 - 3. Direct reaction
 - 4. Exhaustion LiOH
 - 5. Reaction via intermediates...
- Lab exp \approx Box deployment in 80 m³ compartment
- Capacity calculated from literature and test data
- 2 repeat experiments

Time (s) **Figure 8:** Example Cl₂ removal plot and analysis

3. Results and Discussion $- Cl_2$ and CO_2 removal on in-date LiOH RPC

Results and discussion – Cl₂ removal

- k'_{removal} for Cl₂ was 1.24 x10⁻⁶ s⁻¹.cm⁻²
- Cl₂ capture rate for box deployment in a 80 m³ compartment was calculated:
 53 mL.h⁻¹.box⁻¹ at 1 ppm Cl₂
- Gravimetric analysis showed only a small mass increase of ~1.24 g was detected during experiments.

Figure 9: Cl₂ removal by LiOH-RPC

14 Cl₂ and CO₂ removal on LiOH RPC | April 2024 | © QinetiQ

Results and discussion – CO₂ removal

- Data consisted of two regions, the first from 30-1250 s and second from 1250 s onwards
- k'_{removal} for CO₂ removal was 0.76 x10⁻⁶ s⁻¹.cm⁻²
- Cl₂ removal rate constant was 61% faster than that of CO₂.
- CO₂ capture rate for box deployment in a 80 m³ compartment was calculated:
 - 250 mL.h^1.box^1 at 0.7 $\%~\text{CO}_2$

 CO_2 capture >> CI_2 capture

Figure 10: CO₂ removal by LiOH-RPC

15 Cl₂ and CO₂ removal on LiOH RPC | April 2024 | © QinetiQ

Results and discussion – Cl_2 and CO_2 removal

- Repeat experiments were conducted with CO₂ and Cl₂
- The mean k'_{removal} for each contaminant was:
 - Cl₂: 1.51 x10⁻⁶ s⁻¹.cm⁻²
 - CO₂: 0.74 x10⁻⁶ s⁻¹.cm⁻²
- The rate constant of Cl₂ removal increased by 20% in the presence of CO₂ due to changes in:
 - Temperature
 - Humidity
 - Convection (mass transport)
- Contaminant capture rate for box deployment in a 80 m³ compartment with was calculated:
 - 240 mL.h⁻¹.box⁻¹ at 0.7 % CO_2
 - 69 mL.h⁻¹.box⁻¹ at 1 ppm CI_2

CO_2 capture >> CI_2 capture

16 Cl₂ and CO₂ removal on LiOH RPC | April 2024 | \odot QinetiQ

Figure 11: Simultaneous Cl₂ & CO₂ removal by LiOH-RPC

Results and discussion – Cl_2 and CO_2 capacity

- CO₂ capacity experiments were conducted on curtain materials.
- CO₂ maximum capacity of LiOH RPC is 847 mg.g⁻¹ (~92% saturated)
- Based on the data obtained an estimate of Cl₂ theoretical maximum capacity was calculated to be ~1366 mg.g⁻¹
- This is equivalent to ~7.7 kg of Cl₂ per box of LiOH curtains

Figure 12: CO₂ capacity by LiOH-RPC

3. Results and Discussion
– Removal on CO₂
saturated LiOH RPC

Results and discussion – Cl₂ and CO₂ removal on CO₂-saturated LiOH RPC

- No CO₂ capture was observed (all LiOH converted to Li₂CO₃)
- k'_{removal} of Cl₂ during the fully carbonated curtain tests was 0.28 x10⁻⁶ s⁻¹.cm⁻²
 - 77% less when exposed to only Cl_2
 - 81% less when exposed to Cl_2 and CO_2
- Cl₂ capture rate for box deployment in a 80 m³ compartment with was calculated:
 - 8 mL.h⁻¹.box⁻¹ at 1 ppm Cl_2
- LiOH curtains saturated with CO₂ therefore continue to remove Cl₂ albeit at a reduced rate. Nevertheless, this could be beneficial in a DISSUB scenario

Figure 13: Cl₂ removal by (purple) LiOH-RPC and (orange) CO₂-saturated LiOH-RPC

19 Cl₂ and CO₂ removal on LiOH RPC | April 2024 | © QinetiQ

3. Results and Discussion– Compartment modelling

Results and discussion – Compartment modelling

 Limited modelled Cl₂ concentration reduction in an 80 m³ compartment with 1 box of LiOH RPC deployed, assuming that laboratory results scale linearly using equation:

$$In\left(\frac{[Cl_2]_0}{[Cl_2]_t}\right) \cdot \frac{1}{k'} = t'$$

- Initial compartment concentration of 3 ppm
 - No further Cl_2 generation
 - Using fresh LiOH RPC Cl₂ concentration reduced to 1 ppm in 1.1 hour
 - Using CO₂-saturated LiOH RPC Cl₂ concentration reduced to 1 ppm in 3.6 hour

Figure 14: Modelled removal of Cl₂ removal by (purple) LiOH-RPC and CO₂-saturated LiOH-RPC (orange)

3. Results and Discussion– Removal on old batch ofLiOH RPC

Results and discussion – Cl₂ and CO₂ removal on out-of-date LiOH RPC

- Removal on 14 year old LiOH RPC
- Cl₂ removal rate constant (1.22 x10⁻⁶ s⁻¹.cm⁻²) was comparable to newer LiOH RPC batch tested
- CO₂ removal rate constant was slightly higher (1.17 x10⁻⁶ s⁻¹.cm⁻²) than the newer batch tested
- These results suggest that there is variation in the rate of CO₂ removal by LiOH curtains that is not solely due to length of time since manufacture

Figure 15: CO₂ removal by in-date and out-of-date LiOH-RPC

QINETIQ

4. Conclusions

QINETIQ

Conclusions

- Cl₂ and CO₂ removal on LiOH RPC
 - CI_2 removal rate constant was 61% faster than that of CO_2 but the overall capture is less due to low CI_2 concentration
 - Cl_2 rate constant increased a further 20% when CO_2 was present
 - LiOH RPC can potentially remove up to ~7.7 kg of Cl₂ per deployed box
- Removal on CO₂ saturated LiOH RPC
 - Fully carbonated curtains removed Cl₂ at reduced rate
 - This was 81% slower than fresh LiOH RPC when simultaneously exposed to Cl₂ and CO₂
 - The residual Cl₂ removal capability of fully carbonated curtains may be beneficial in a DISSUB
- Modelling of Cl₂ removal performance in a 80 m³ compartment
 - Freshly deployed LiOH RPC will reduce Cl₂ concentration from 3 to 1 ppm in 1.1 h, CO₂ saturated LiOH RPC will take ~x3 times longer
- · Removal on older batch of curtain materials
 - Older batch LiOH RPC had comparable Cl₂ and CO₂ removal rate capability

25 Cl_2 and CO_2 removal on LiOH RPC | April 2024 | $\ensuremath{\mathbb{C}}$ QinetiQ

Acknowledgments

Presenter would like to thank co-authors and Maritime Life Support

Naval Authority Technology Group, MOD UK

26 Cl₂ and CO₂ removal on LiOH RPC | April 2024 | $\ensuremath{\textcircled{O}}$ QinetiQ

QINETIQ

facilities and support

of in-country growth

a platform

And you for your attention...

Survive[®] software

modelling

management and integrated logistics

support

and analysis

software

blended training

solutions

an enterprise wide

safety ecosystem.